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The supersonic flow past a fin mounted on a flat plate is simulated numerically by 
solving the Reynolds averaged Navier-Stokes equations. The results agree well with 
the experimental data. Post-processing of the numerical solution provides the 
missing flow-field evidence for confirming the currently accepted flow model, whose 
conception was based mainly on surface data. It is found that the flow is dominated 
by a large vortical structure, which lies on the plate and whose core has a remarkably 
conical shape with flattened elliptical cross-section. Along the fin and close to the 
corner, a slowly growing smaller vortex develops. On top of the conical vortex and 
along it a A-shock is formed. Quantitative data are presented, which show that the 
flow is not actually purely conical but a small deviation exists, especially at the part 
between the separation shock and the plate. This deviation is detected when the 
streamwise extent of the flow is more than 2&30 initial boundary-layer thicknesses. 
Owing to the rather quasi-conical nature of the flow, the various flow variables do not 
remain constant along rays that start at  the origin of the conical flow field, but they 
vary slowly. Data are presented which support the view that this deviation from 
conical behaviour is mainly due to the effect of the smaller rate of development of the 
boundary later of the plate, compared to the conical vortex. 

1. Introduction 
The impingement of a shock wave on the boundary layer developing along a 

surface is one important three-dimensional interaction, which may have significant 
influence on the performance of some parts of a hypersonic vehicle, like its intakes 
and its control surfaces, owing to the localized high pressure and heat transfer rates 
that usually accompany these types of flow. Traditionally the impinging shock is 
called a glancing shock, to distinguish it from the case of a generation of a shock wave 
on the same surface on which the boundary layer develops. 

Various simple geometries have been studied, both experimentally and com- 
putationally, that resemble elements of a hypersonic vehicle subjected to a glancing 
shock-wave/turbulent-boundary-layer interaction. The attachment of a sharp fin 
normally to a flat plane is one of the rather simple configurations which result in such 
an interaction. The oblique shock that is generated on the fin crosses the boundary 
layer, which grows along the plate, and owing to the subsonic part of the latter, the 
shock pressure increase is smeared out  on the wall, so that a disturbed flow pattern 
appears which covers a significant part of the flow upstream and downstream of the 
inviscid shock position. If the shock is sufficiently strong the flow separates and the 
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FIQIJRE 1.  Flow field model proposed by Token (1974). 

topology of the flow changes significantly. Numerous studies, most of them 
experimental, have been performed over the last 20 years using the fin-plate or the 
compression-corner configuration, whose flow structure is similar. Surface flow 
visualization and pressure measurements have provided the basic information for the 
determination of the type of flow established. The contributions of Maskell (1955) 
and Lighthill (1963), on determining the topology of three-dimensional separation 
from surface observations have been very helpful here. 

The first flow model of the fin-plate configuration was proposed by Token (1974). 
In an attempt to explain the strong peaks in the heat transfer near the fin-plate 
junction, Token suggested that a separation vortex appears between a separation 
line visible on the flat plate just ahead of the shock, and a reattachment line also on 
the flat plate but close to the corner (figure 1). More recently, Kubota & Stollery 
(1982) have improved the model of Token after carrying out an extensive 
experimental programme for variable shocks at a Mach number of 2.3. In addition 
to surface measurements, they have done a series of vapour and smoke-screen studies 
that helped to detect a smaller vortical structure that appears on the surface of the 
fin, close to the corner. This small structure is always present, according to Kubota 
& Stollery, even when a weak interaction is established (figure 2a). If the interaction 
is strong, the separated flow is made up of two vortices: a tight, vigorous, roughly 
circular one in the corner, with a weak, elongated one above it (figure 2b). For the 
test conditions of Kubota & Stollery, the size and shape of the vortices were such that 
they occupied a region equal to the initial boundary thickness, even at the trailing- 
edge position of the fin. However, they note that the vortices would be expected to 
grow and thus have a larger effect on the outer flow further downstream. Both 
proposed models indicate that the large vortex develops conically (figures 1 ,2  b). This 
feature is based on the observation that on the surface of the plate the separation and 
reattachment lines converge towards a virtual origin ahead of the fin. 

Subsequent studies have confirmed the quasi-conical nature of the fin-plate 
interaction (e.g. Settles & Dolling 1986; Shapey & Bogdonoff 1987). It has been 
found that in addition to the separation and reattachment lines, the extrapolation 
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FIGURE 2. Flow field model proposed by Kubota & Stollery (1982) : (a)  weak interaction ; 
( b )  strong interaction. 

of the undisturbed oblique shock wave also converges approximately to the virtual 
conical origin. There is only a systematic deviation from conical behaviour in the 
vicinity of the fin’s leading edge, in a region called the ‘inception zone’ (Lu & Settles 
1989). An important consequence of the quasi-conical nature of these interactions is 
the presumption that their features are entirely projected upon the surface of a 
sphere whose origin is the virtual conical origin (Alvi & Settles 1990). That is because 
no change occurs along the rays of a conical flow. Alvi & Settles (1990) have 
demonstrated this feature of the conical flow. Focusing a light beam at the virtual 
origin of the approximate conical flow field and aiming it such that the resulting 
conical light beam coincided with the rays of the swept interaction (conical 
shadowgraphy), they obtained pictures whose interpretation leads to the modified 
interaction flow-field model shown in figure 3. This model includes, in addition to the 
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FIQURE 3. Modified model of Alvi & Settles (1990). 

A-shock structure, evidence of the so-called secondary separation and the appearance 
of a normal shock in the region of impingement of the air, after it passes through the 
A-shock system. According to Alvi & Settles (1990), the secondary separation 
appears only for moderate strength interactions and not for weak or very strong 
ones. 

Evidently, in addition to the experimental studies, numerical simulations are 
needed to provide more details of the flow structure away from the walls. Actually, 
the fin-plate configuration and the compression-corner flow, have been objects of 
numerical studies since the early days of numerical simulation of viscous flows (e.g. 
Hung & MacCormack 1977 ; Horstman & Hung 1979). A systematic computational 
program in this field has been applied by D. Knight and C. Horstman in cooperation 
with S. Bogdonoff. Their latest results, which are related to a strong fin-plate 
interaction, are reported by Knight et al. (1987). The computed surface and Pitot 
pressure, as well as the yaw angle profiles and the surface streamlines, are observed 
in good agreement with the experimental data, thereby confirming the efficiency of 
their codes. Concerning the existence of the conical vortex, they have found that the 
trajectories of streamlines that originate upstream of the separation line close to the 
wall rise, cross the separation line and rotate in the direction in which the separation 
vortex should rotate. This supplies strong evidence that the model of Kubota & 
Stollery (1982) is correct. However, direct visual evidence of the existence of the 
conical vortex structure, of the smaller vortex along the fin and of the associated 
shock system is still missing. Besides, no data have been presented which 
quantitatively support the hypothesis of the conical nature of the flow. 

The purpose of this study is to provide the missing vital evidence of the 
establishment of a quasi-conical flow field in a fin-plate configuration. To this end, 
an existing thin-layer Navier-Stokes code (Muller 1990) was modified, so that all the 
viscous terms are retained in the directions normal to the plate and to the fin. This 
modification is necessary for an accurate simulation of the particular flow. Attention 
has been given to the grid refinement and to the use of an efficient technique for the 
visual detection of three-dimensional vortices. The code uses an upwind TVD 
scheme, which is known to capture the shock waves very efficiently. 
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2. Description of the numerical procedure 
2.1. Equations and numerical method 

The governing NavierStokes equations in dimensionless conservation law form and 
in general coordinates are 

aQ aE aF aG aE, aF, aG, -+-+-+-=-+-+- 
a7 a t  a7 ag a t  a7 a[ , 

where Q = J-l(p,pu,pv,pw, e)T is the vector of the conservative variables, and J is 
the Jacobian of the transformation from Cartesian to general coordinates. E, F, G are 
the inviscid and E,, F,, G, are the viscous fluxcs in the streamwise 5-, lateral 7-, and 
normal [-direction correspondingly. The expressions for the fluxes are given in 
certain textbooks. 

Stokes’ hypothesis is used for relating the two viscosity coefficients, which appear 
in the viscous fluxes. Also, the Sutherland law is employed for the estimation of the 
molecular viscosity. The above system of equations is valid for laminar as well as 
turbulent flows, by replacing the molecular transport coefficients with their turbulent 
counterparts. The turbulence model is described in $2.4. 

In  the original version of the numerical algorithm which was used in the present 
study (Miiller 1990), the thin-layer approximation is applied, according to which the 
viscous terms are retained only in the direction normal to the wall. In  the case of the 
fin-plate configuration, walls exist in two directions (7 and 5). Thus, it is necessary 
to apply the concept of the thin-layer approximation to both of them. Furthermore, 
in the corner region, the viscous terms associated with cross-derivatives may be of 
the same order of magnitude as the normal derivatives, which are the only ones 
retained in the thin-layer approximation. Considering these facts the code of Miiller 
was modified, so that in the directions of the two walls all the viscous terms were 
retained. 

Equations (1) are solved at  the interior grid points of a boundary-fitted structured 
mesh. A second-order central differencing is applied to the implicitly treated viscous 
fluxes. The inviscid fluxes are determined by the upwind total variational diminishing 
(TVD) scheme of Yee & Hartem (1987), which uses Roe’s approximate Riemann 
solver (Roe 1981) and Harten’s second-order modified flux approach. Employing the 
first-order Euler implicit formula, the inviscid fluxes are approximately linearised. 
Since the resulting linear system is block-diagonally dominant with respect to the 
spectral radii, it may be solved by a relaxation method. In the present case, where 
time marching was applied for calculating the steady-flow solution, alternating 
Gauss-Seidel relaxation in the streamwise direction was employed. 

2.2 Computational mesh 

Owing to the simplicity of the geometry of the fin-plate configuration, the mesh was 
generated algebraically. For an adequate resolution of the viscous effects a clustering 
was applied close to the plate and to the fin. In figure 4 the mesh which was used is 
shown. In  each crossflow plane (z- ,  y-directions) 95 x 79 points were used, while in the 
streamwise x-direction there were 45 grid planes uniformly spaced, with Ax = 6,. The 
input plane was located at a distance equal to 26, upstream of the leading edge of 
the fin, and the downstream boundary a t  x = 436,. The height of the computational 
domain was 116,. The width was uniform before the fin, equal to 106,, but from 
there on it increased to z = 436, at the outflow plane. This widening was necessary 
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FIQURE 4. Computational grid. 

to ensure that the computational domain laterally extended more than the 
interaction domain (for the application of the boundary conditions). Previously a 
solution had been obtained whose axial spacing was half of the final one, but it 
extended only to x = 376,. For that solution a two-zones approach had been applied. 
Both solutions provided results of the same accuracy. It seems that the fineness of 
the grid a t  the crossflow planes is more important for the fin-plate configuration than 
in the axial direction. 

It is noted that the axial extent of the calculated flow field is almost three times 
longer than the extent of the experimental flow which the present calculations 
simulate. The longer extent is necessary to study the development of the vortex far 
from the origin of the conical flow. 

2.3 Boundary conditions 
A boundary-layer profile, having equal thickness and Reynolds number to the 
experimental one, was prescribed at the inflow plane. This profile was also used as the 
initial condition of the flow field. On the outflow boundary, as well as on the far field 
(upper and lateral boundaries) the gradients of the flow were set equal to  zero. The 
wall was assumed impermeable, and no-slip boundary conditions were applied. Also, 
the wall was assumed adiabatic and the pressure gradient normal to the wall was set 
to  zero. On the symmetry boundary (upstream of the fin, a t  x = 0) the normal 
component of the velocity was set to  zero, while the normal derivatives of the 
remaining flow quantities were assumed to be zero. 

2.4. Turbulence model 
One important conclusion of the numerical study of Knight et al. (1987) was that the 
overall structure of the three-dimensional sharp fin interaction is insensitive to the 
turbulence model, except within a small portion of the boundary layer adjacent to 
the surface. This conclusion is based on the fact that though Knight et al. used two 
different turbulence models (i.e. the algebraic eddy viscosity model of Baldwin & 
Lomax (1978) and the k-c model) which resulted in significant differences in the 
turbulent eddy viscosity profiles, the velocity fields computed by both models were 
in close agreement. 

Considering the computational simplicity which an algebraic model offers, it was 
decided to  use in the present calculations the two-layer model developed by Baldwin 
& Lomax (1978). This model is similar to  the Cebeci and Smith model, but with 
modifications that avoid the necessity of finding the edge of the boundary layer. 

The calculation of the eddy viscosity is done in the crossflow planes ((y, 2)-planes), 
for successive streamwise positions (x-direction). I n  each ( y ,  z)-plane, the com- 



Numerical investigation of high-speed conical $ow 613 

putational domain is an orthogonal rectangle formed by the plate and by the fin. In 
the inner region the Prandtl-Van Driest formulation is used 

(1Ut)inner = P(KD"l)2w. (2) 

where K is the von KhmSn constant, D is the van Driest damping factor, w is the 
magnitude of the vorticity and 7 is the distance normal to the wall. In  the particular 
case examined here, where there are two walls, a modified distance developed by 
Hung & MacCormack (1978) is used : 

This modified distance accounts for the turbulent mixing length near the corner 
under the influence of both walls. In the outer region, the following equation is used 

( A o u t e r  = Ccp(O*Ol%FwakeP)~ (4) 

r m a x  Fmaxy 
Cw, Tmax 4iflFrnax ' 

= the smaller of 

The quantity F,,, is the maximum value of the function F (7) = ywD, and qmax is the 
value of 7 at which it occurs. The Klebanoff intermittency factor is given by 

The quantity 'udif is the difference between the maximum and minimum velocity in 
the profile (in the present case it is equal to ue). The constants appearing in the 
previous relations are C,, = 1.6, C,, = 0.25, CXleb = 0.3. 

3. Results 
The flow which has been studied experimentally by Shapey &, Bogdonoff (1987) 

and numerically by Knight et al. (1987), has been selected to be simulated 
numerically. The flow has M ,  = 2.94, Re, = 8.8 x lo5, and a = 20". There is only one 
lengthscale in the flow : the thickness of the boundary layer upstream of the fin. Its 
value in the case studied is 8, = 1.27 cm. Using the freestream data we have 
calculated a boundary-layer velocity profile, which we have used for the 
determination of the initial flow conditions at  the start of the calculations. 
Subsequently, this velocity profile was kept constant only at the input plane. In the 
following section, comparisons of the calculated flow field with experimental data are 
presented, which show that the flow studied is adequately simulated. Then visual 
images of the flow are presented, which reveal the vortex system and the 
accompanying shock structure. After that, the conical nature of the flow field is 
investigated quantitatively. 

3.1. Comparison with experiments 
Shapey & Bogdonoff (1987) have obtained surface pressure distributions along rows 
of orifices aligned with the flow direction. Also, the boundary layer on the flat plane 
(which in this case was the wind-tunnel wall) was surveyed using a computer- 
controlled cobra probe. In addition to the Pitot pressure (PT), the probe measured the 
yaw angle where p = tan-' (wIu)  and u, v, w are the Cartesian components of the 
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FIQURE 5. Comparison of calculated and measured Pitot pressure and yaw angle at Station 5:  
(a) yaw angle; ( b )  Pitot pressure. 

velocity in the x-, y-, z-directions. The alignment of the survey positions with the flow 
direction was a good choice, because the data cover a zone that starts in the upstream 
undisturbed flow area, crosses the separation line, passes through the A-shock and 
terminates close to the fin after crossing the reattachment line. 

In figure 5 ,  the comparison is shown between the computed and the measured yaw 
angle and the Pitot pressure at Station 5, which is located between the separation 
line and the shock, with one undisturbed boundary-layer thickness upstream of the 
shock. The Pitot pressure has been normalized by the freestream Pitot pressure. All 
lengths are normalized by the thickness of the undisturbed boundary layer. It is 
observed, in figure 5 ,  that the agreement between the calculated profiles and the 
experimental ones is very good. The ‘overshoot’ of the Pitot pressure above the 
boundary layer is due to the compression system ahead of the shock. 

In figure 6 the same quantities, p and PT, are compared at Station 7,  which is 
located approximately half a boundary-layer thickness downstream of the inviscid 
shock position. Again the agreement is very good, especially in the case of the yaw 
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FIGURE 6. Comparison of calculated and measured Pitot pressure and yaw angle at Station 7 :  
(a )  yaw angle; ( b )  Pitot pressure. 

angle. The data a t  Station 8, which is located 2.56, downstream of the shock, are 
compared in figure 7. Finally, the surface wall pressure is compared in figure 8. The 
computed pressure distribution is quite similar to the experimental one. 

Compared to the calculations of Knight et al. (1987), the present results are closer 
to the experimental data. This is due to the finer grid and probably to the better 
shock-capturing nature of the upwind numerical scheme which has been used. 

3.2. Vi'isual analysis of the flow field 
A numerical solution provides as an output the values of the various flow variables 
(velocity components, density, pressure, etc.) a t  the grid points of the calculation 
domain. The transformation of these data into images of the flow field which reveal 
its structure, is the next phase of a numerical simulation. Various processing 
techniques have been developed for the detection of vortices. The graphic display of 
the trajectories which follow particles 'released' a t  the origin of the flow is one 
classical technique, which among other details, effectively visualizes vortices which 
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FIQURE 7. Comparison of calculated and measured Pitot pressure and yaw angle at Station 8:  
(a) yaw angle; (b) Pitot pressure. 

may exist in the flow field. The displayed streamlines turn around the core of the 
vortices: giving visual evidence of their existence and also an indication of their 
strength. The calculation of the streamlines is much easier if the region which the 
vortices occupy at the outflow boundary is known, from experiments or from another 
method of detection (e.g. from cross-sections of velocity vectors). Then a backward 
integration of the trajectories provides only the streamlines which are entrained by 
the vortex. This technique has been applied in this work. However, as a prime 
visualization tool of the vortices another technique has been used. 

An effective technique of automatic detection of vortices in a three-dimensional 
flow has been proposed by Vollmers Kreplin & Meier (1983). They have shown that 
vorticity exists in those parts of a flow in which the skew-symmetric part of the rate 
of strain tensor (spatial derivatives of the velocity field) in non-zero. This skew- 
symmetric part is related to  the curl of the velocity vector field and represents the 
vorticity. The discriminant of the strain tensor is evaluated numerically a t  all the 
points of the flow field. Then contour surfaces of constant values are created and 
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URE 9. Calculated skin-friction lines. 

displayed. These contours indicate where in the field there are vortices. The 
discriminant technique has been incorporated by Vollmers (1989) in a graphic system 
called Comadi. This system can display simultaneously repeated created images of 
data. Thus in the same picture vortices and shock waves, for example may be shown 
though a different technique is used for their graphic detection. 

We start the presenta,tion of images of the flow by showing in figure 9 a perspective 
view of the calculated skin friction lines on the surfaces of the fin-plate configuration. 
These lines simulate the experimental surface visualization. The skin friction pattern 
provides first information concerning the flow separation. It is seen in figure 9 that 
on the flat plate, the separation line originates from the apex of the fin and appears 
as an asymptote to the skin friction lines which converge towards it. Close to the 
corner, the reattachment line is formed by the diverging skin friction lines. The 
distance separating the separation line from the reattachment line increases 
progressively with the distance from the apex, indicating that the flow is quasi- 
conical. Close to the apex the separation line is curved, but further downstream it 
becomes a straight line. This initial region of deviation from conical behaviour is the 
region called by Lu 5, Settles (1989) the ‘inception zone’. 
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Cross-section of the vortices 

FIGURE 10. Perspective view of the conical vortices and of the shock waves. Vortices are visualized 
by iso-contours of the discriminant of the velocity gradient tensor, shock waves by iso-contours of 
the density. 

The skin friction lines turn rapidly when they approach the separation line. If the 
points where the skin friction lines first start to  be curved are jointed, the so-called 
‘upstream influence line’ is formed. However, i t  is not easy to decide on curved lines, 
like those shown in figure 9, which is the turning point. We have found that this 
uncertainty is removed if iso-value contours of the wall pressure are used. These 
contours have been drawn in figure 15. It is seen in this figure that shortly before the 
rapid turn of the streamlines toward the separation line the shade pattern of the 
pressure changes from the one which corresponds to  freestream values to that which 
indicates an increase of pressure. The line indicated by this type of visualization is 
similar to the separation line and i t  runs close to it, with increasing distance in the 
downstream direction. 

Concerning the fin, it is observed in figure 9 that in its major part the skin friction 
lines remain parallel to the horizontal plate, but in its lower part, close to the corner, 
they converge towards a separation line. This line initially moves away from the 
horizontal plane, however at greater distances from the apex it tends to  be parallel 
to it. On both sides of the corner, on the plate and on the fin, the skin-friction lines 
are dense, indicating the reattachment region of the longitudinal vortex, which is 
formed in this area. 

The vortices which a,re expected to appear in this type of flow are shown in figure 
10, where the contours of the eigenvalues of the velocity gradient field are shown, 
along with some cross-sections on which the density contours have been drawn 
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(detection of shock waves). Figure 10 includes all the critical elements of the fin-plate 
flow. It is observed that, as expected, the flow is dominated by a large vortical 
structure, which lies on the flat plate and whose core has a remarkably conical shape 
with a flattened elliptical cross-section. Also on the flat plate, on the side of the main 
vortex, a very thin vortex core has developed in the direction of the flow. This is not 
another independent vortex, but the core of the vorticity sheet which lifts off the 
surface, along the separation line, and rolls up to form the conical vortex. Along the 
vertical fin and close to the corner, the longitudinal vortex, mentioned by Kubota & 
Stollery (1982), is seen. It also develops quasi-conically, but with a smaller rate of 
increase, compared to the prime conical structure. In  the lower part of the figure, a 
cross-section of the vortices is shown. There it is indicated that indeed the flat ground 
vortex constitutes the initial part of the primary conical vortex. In  addition, it is 
observed that the fin vortex has contact with the fin itself and with the plate. 

The density contours on three cross-sections of the flow (i-iii), which are also 
displayed in figure 10, visualize very clearly the shock system which is formed along 
and on top of the conical vortex. The system is composed of the glancing shock wave 
(which appears owing to the existence of the fin), of the separation shock, produced 
by the coalescence of the compression waves, and of the rear quasi-normal shock, 
which extends from the bifurcation point to the surface of the conical vortex. 

Some features of the flow field are better visualized if the vorticity is used as a 
visualization parameter. In figure 11 the vorticity sheet of the boundary layer is 
shown, appropriately ‘illuminated ’, to give the impression of a three-dimensional 
picture. In this figure it is clearly shown that the vorticity sheet lifts off the surface 
of the plate, along the separation line, to form the conical separation vortex. Along 
the fin and close to the corner the formation of the fin vortex is also clearly shown. 
Other features of the flow field are shown in figure 12, where the iso-contours of the 
absolute value of the vorticity have been drawn in two cross-sections of the flow field 
(sections (ii), (iii) of figure 10). It is seen that in addition to the shock system which 
has already been visualized by the density contours in figure 10, the shear layer 
which originates at  the triple-point and impinges on the corner is clearly shown. It 
is not,ed that the density difference across the shear layer is too small to be visible in 
the density contours shown in figure 10. A remarkable similarity exists between the 
cross-section of the flow shown in figure 12 and the model of Alvi & Settles (1990), 
figure 3, which is based on their shadowgraph pictures. 

The distribution of vorticity within the conical vortex is another critical feature of 
the flow which is shown in figure 12. It is seen that the vortex is continuously fed with 
the vortical fluid of the boundary layer. Higher values of vorticity are observed on 
the upper part of the vortex at the cross-section (ii) than at  the cross-section (iii). 
This is clearly indicated in the pictures by the relative size of the black contour. 
Trying to explain this difference in the vorticity distribution, we note that while the 
thickness of the boundary layer in section (iii) is slightly larger than the thickness of 
the boundary layer in section (ii), the size of the vortex is considerably larger in 
section (iii). Thus, almost the same influx of vorticity is distributed in a larger cross- 
section in the downstream section (iii). Concerning the circulation around the conical 
vortex, it is expected that owing to the viscous effects it is decreasing downstrcam. 
For estimating the circulation of the vortex at  section (ii) or (iii), the numerical 
calculation of the outflow of vorticity through the cross-section of the vortex is 
required. Such a numerical integration, on a surface whose border is not clearly 
defined, will not provide reliable results. 

Some other details of the shock system and of the conical vortex are shown in 
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FIGURE 11. Visualization of the vorticity sheet of the boundary layer. 

FIGURE 12. Iso-contours of the absolute value of vorticity: ( a )  at section (ii); ( b )  at section (iii). 

figure 13(a) ,  where the iso-Mach lines and the velocity vectors have been drawn at 
a cross-section normal to the shock wave a t  the outflow region. In the same figure the 
border lines of the vortices have been drawn. It is seen that the core of the conical 
vortex is located in a region of high shear. No circulatory motion is visible in the 
corner region where the vorticity distribution indicates the existence of the fin 
vortex. That is because the axis of this vortex is almost parallel to the fin and not 
to the glancing shock, like the conical vortex. The fin vortex is visible in figure 13 ( b ) ,  
where in an enlargement of thc corner region the velocity vectors have been drawn 
a t  a cross-section normal to the fin. 
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FIGURE 13. (a) Iso-Mach lines, velocity vectors and border lines of vortices at a cross-section normal 
to the glancing shock. ( b )  Velocity vectors and border lines of the fin vortex at a cross-section 
normal to the fin (enlargement of the corner region). 

The induction characteristics of the vortices of the flow field are hdicated in figure 
14, where some of the streamlines which pass through their cores are shown along 
with a cross-section of the vortices. It is seen that the conical vortex completes more 
than one turn in the calculated field, while it is hard to say that the fin vortex turns, 
in the extent of the field. As expected, the conical vortex rotates in a cbunterclockwise 
direction. Coloured streamlines, not included in this paper, indicate that the flat 
vortex, formed by the lifted off vorticity layer, also rotates very slowly in a, 
counterclockwise direction. Concerning the fin vortex, we suppose that it rotates 
very slowly in a clockwise direction. This is indicated by the skin-friction lines. 
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FIGURE 14. Some streamlines passing thraugh the core of the vortices. 

3.3. Dptprmination of thp virtual origin of the conical flow 

It has been mentioned already that the existence of a virtual origin, on which all the 
critical lines of the flow meet, is one of the consequences of the establishment of a 
conical flow field in a fin-plate configuration. The existence of this origin may be 
verified if in figure 10 the border lines of the conicaal vortex and the line which joins 
the shock triple-point are drawn. Then these three lines meet almost at the same 
point, upstream of the tin. It is worth noting also that the boundaries of the flat 
vortex meet approximately at  the same point. 

A more precise determination of the virtual origin is given in figure 15, where the 
skin friction lines and the vortices are shown, viewed from below the flat plate. It is 
seen in this figure that the separation line, the reattachment line and the shock line 
almost meet a t  the same point. If the border lines of the vortex are drawn they give 
a slightly different intersection. This happens because the size of the vortex depends 
to an extent on the sensitivity value of the function which is used for its 
visualization. For eliminating possible error caused by the graphical determination 
of the virtual origin, a numerical search has been done, assuming that the origin lies 
on the extrapolation of the inviscid position of the shock. During this search, the 
virtual origin was located at  successive positions along the shock line, and at  each 
position the pressure along conical rays was checked to see if it  was constant. The 
best conical behaviour was found when the virtual origin was located a little closer 
to the fin than the origin determined graphically. This position was used subsequently 
for studying the conical similarity. 

3.4. Factors which may adversely affect the establishment of a conical flow field 

The existence of a conical similarity among the geometric parameters of the flow field 
is an indication that most probably the flow characteristics also follow a conical 
variation, i.e. flow variables remain unchanged along rays which start a t  the conical 
origin and pass through the flow field. Some evidence supporting this view has been 
provided by Settles & Teng (1984). They have shown that application of conical 
correlation to  the surface pressure distribution in the flow about a swept-back corner, 
results in almost perfect collapse of the data in the complete range of the flow. 
However, in the course of this study it has been found that the flow is not purely 
conical in nature. There are physical processes which adversely affect the conical 
variation of most of the flow variables. 
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FIGURE 15. Determination of the virtual origin of the conical flow. 

Actually, perfect similarity is expected in those cases of conical fields in which the 
surrounding flow field is uniform. However in the present case the vortex is partially 
exposed to a non-uniform flow : the boundary layer of the horizontal plate. It is noted 
that while the vortex at its initial state of development is totally embedded within 
this boundary layer, gradually it becomes thicker. This happens because the rate of 
thickening of the boundary layer in the downstream direction is not equal to the rate 
of increase of the cross-section of the vortex. This feature of the flow field has already 
been shown in $3.2 (figure 12). Also, from the data of figure 13 it is estimated that 
the thickness of the vortex at  the outflow plane is almost three times greater than the 
local thickness of the boundary layer. In contrast, we have found that at the end of 
the inception zone the vortex is just as thick as the boundary layer. 

The different rate of thickening of the vortex and of the boundary layer is expected 
to affect the similarity outside the conical vortex. This statement is supported by the 
data shown in figure 16(b). There, the iso-lines of the Mach number distributions at  
the first and at the third cross-section of figure 10 have been conically correlated, i.e. 
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FIQURE 16. Conical projection of a section to outflow plane. Visualization using the iso-Mach lines: 
(a) technique of conical projection ; ( b )  projection of section (i) ; (c) projection of section (ii). 

the data of the first section has been projected conically on the third. For this, the 
lengths at the first cross-section were multiplied by 2.07. This is the value of the 
conical similarity ratio, i.e. the ratio of the distances of the sections from the conical 
origin. The principles of the conical projection are shown in figure 16(a). 

If the flow field is purely conical, the iso-Mach lines of the two sections coincide. 
However, in the present case, while good coincidence is observed between the 
separation bubbles, the glancing shocks and the triple shock points (figure 16b), the 
feet of the A-shocks are fairly correlated, especially the separation shocks, while there 
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is no equivalence at  all between the boundary layers in the two cross-sections. More 
particularly, the boundary layer of the first cross-section is about 40 % thicker than 
the boundary layer of the third section. This large difference in the scaling is due to 
the lower rate of development of the boundary layer, compared to that of the vortex. 

Concerning the similarity of the elements of the h-shocks, it is observed in figure 
16(b), that the differences are significant only between the separation shock waves. 
The rear shocks are closer to each other. The separation shock at  the first cross- 
section forms a smaller angle with the boundary layer than the similar shock at the 
third cross-section. This is explained if the different thickness of the boundary layer 
is considered. It has been mentioned in $3.2 that the line which joins the shock triple 
points passes through the virtual conical origin. The same is valid for the separation 
line. However the compression lines which form the separation shock start forming 
at the region of the separation line. Thus returning to figure 16(b), in the conically 
correlated sections the shock-triple points must coincide and the separation shocks 
must start to form a t  the same horizontal distance from the fin (equal to about 346, 
in this case). But the vertical distance of origination of the separation shocks depends 
on the thickness of the boundary layer on each cross-section. In this particular case 
where the thickness of the boundary layer appears higher in the first section, the 
separation shock at  this station starts at  a higher vertical position than the shock at  
the third station. Hence, its inclination to the horizontal plane will be smaller. In  the 
case of the rear shocks, they are closer, because they start and terminate on parts of 
the flow which correlate conically very well (the shock triple point and the top of the 
conical vortex). 

The deviations from the conical behaviour are smaller if the two cross-sections 
which are compared are closer. This is demonstrated in figure 16(c), where the second 
section is conically projected on the third section. In  this case the conical similarity 
ratio is only 1.31. In figure 16(c) the projection is very good. Even the thickness of 
the boundary layers is not very different. It is noted that the second section is located 
approximately in the middle of the distance of the other sections (see figure 10). The 
distance between sections (ii) and (iii) is 13.06,, while between sections (i) and (iii) 
it is equal to 27.46,. 

The conical projections that were just described may be considered as equivalent 
to the conical shadowgraphy used by Alvi & Settles (1990). It is remarkable that also 
in the shadowgraph pictures of Alvi & Settles multiple shock formations exist, one 
close to the other. Probably they are due partially to misalignment of the shocks, a t  
the initial part of the flow, and partially to the interaction with the boundary layer, 
as described before. 

The increasing value of the angle of the separation shock from the first section to 
the third, means that the pressure increase through this shock varies similarly. A 
careful examination of the density contours, in figure 10, shows that indeed the 
density distribution between the two legs of the h-shock is not the same at the three 
sections, but the levels of the values are increasing in the downstream direction. 
These differences may be interpreted as deviations from the conical similarity. 
Actually, the different scales of development of the vortex and of the boundary layer 
have other more severe effects on the conical similarity. In figure 16(b), three 
horizontal line segments (aa,bb,cc) have been drawn. If the flow variables are 
checked for conical similarity along one of the lines which result if the line segments 
are extended to the right, for example the middle line segment (bb) ,  the following 
observations may be made. Starting from left to right, the line (bb) will cross the 
vortex and then will pass through the vorticity layer and the boundary layer. While 



within the vortex the flow conditions are most probably similar, this does not happen 
within the vorticity layer which envelopes the vortex. That is because owing to the 
unequal thickness of the undisturbed boundary layers any point of the line will 
correspond to a different position at  the profiles of the two vorticity layers. This is 
more evident at the right side of the figure. There, the extension of the line segment 
(bb)  will be outside the boundary layer of section (iii), but inside the boundary layer 
of section (i). At  any point of line (bb)  in this region, the various profile variables 
(velocity, density etc) will have their freestream values at section (iii), but smaller 
values depending on the shape of the various profiles a t  the section (i). 

If the higher line segment (cc) is examined (figure 16b), it is found that its extension 
does not cross the vorticity layers or the boundary layers. Its extension will run 
through the rear shock and the separation shock. Thus, in this case the possible 
differences will be related only to the different compression level between the shocks. 

The preceding qualitative analysis leads to the conclusion that the flow field as a 
whole is not purely conical, but a small deviation from conical behaviour exists in a 
large part of the field. In the next section quantitative data will be presented that 
will further support this view. 

Before proceeding to the quantitative analysis, another possible source of 
deviation from the conical similarity will be examined : the boundary layer of the fin. 
This boundary layer starts to be formed a t  the leading edge of the fin, and it requires 
some distance to reach a similarity state. In addition, the presence of the fin itself 
close to the conical vortex may affect its characteristics, at  least at the initial part 
of the flow. Solid support to this statement is provided in figure 17, in which the 
velocity vectors close to the surface of the plate are plotted. In addition to the 
developing shape of the boundary layer, the deceleration of the flow close to the fin, 
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at the region where the shock wave interacts with the boundary layer of the plate, 
is worth noting. The vectors reach a similar profile in the lateral direction a t  a 
distance from the fin equal to about 206,. 

3.5. Quantitative study of the conical nature of the flow field 

I n  this section the variation of the value of some representative flow variables along 
conical rays will be presented. The flow variables which will be compared for conical 
similarity are the pressure, the density, the component of the velocity along the 
direction of the conical rays and the yaw angle. The comparisons will be done 
simultaneously at the three cross sections shown in figure 10. Comparisons at four 
different vertical distances from the plate will be done, i.e. at the wall level (first 
computational point off it), and a t  the level of the three horizontal line segments 
which have been drawn in figure 16(b).  As before, the data will be conically projected 
on to the last cross-section. 

The distribution of the values of the aforementioned flow variables a t  the three 
sections at the level of the wall is shown in figure 18. It is seen in this figure that in 
the major part of the spanwise extent of the flow field, the pressure and the density 
show a rather small variation along conical rays which cross the three sections. But 
some of the effects of the non-uniform field on the conical similarity are visible. Thus, 
the compression at the region of the separation shock starts earlier in the first section, 
while the pressure increase is smaller than at  the other sections. In the case of the 
velocity component along the conical rays (figure 18c),  its variation reflects the 
distribution of the velocity field (figure 17). The transitional effects have been 
considerably smoothed out before section (i). Only the curve that denotes the 
variation of the velocity in this section has a different shape and maximum value 
from the other curves in the region between the fin and the vortex. Another 
interesting feature of the flow close to the wall is the observed abrupt increase of the 
velocity at z = 96,, in the case of sections (ii) and (iii), owing to  the velocity field of 
the vortex. The yaw angle (figure 18d) has a similar variation a t  the three sections, 
but differences in the values exist between the curve of the first section and the other 
curves. 

In  figure 19 the distribution of the values at the level of the edge of the initial 
boundary layer is shown. The pressure is almost the same along the interaction, a t  
the second and at the third section, while the curve which denotes the variation at  
the first section has smaller values than the other curves. On the contrary, large 
differences are observed in the variation of the other flow variables along the conical 
rays. Examining first the density, i t  is seen that the curves have a spacing between 
them at  the region of interaction of the vortex with the adjacent boundary layer of 
the plate. Gradually, the curves come closer a t  the region of the vortex. Evidently, 
the poor conical similarity is due to the different scale of development of the vortex 
and of the boundary layer. Actually the curves start from non-equivalent points 
vertically, owing to the different scales. Different values at the various sections, a t  
the start of the interaction of the shock with the boundary layer are also observed 
in the case of the velocity. The differences are not so large in the case of the yaw angle 
(figure 1 9 d ) .  It is remarkable to note that the differences between the last two 
sections are not so large. Evidently, this is due to the small conical similarity ratio. 
The rather good similarity of the pressure is explained by the fact that the pressure 
is constant across a boundary layer. 

In figure 20 comparisons are done a t  the height of the vortex core. The pressure, 
like before, may be considered as following a conical similarity, even in the case of 
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the first section. But this is not the case for the other flow variables. While the curves 
denoting the variation a t  the last two sections are very close, the curves of the first 
section are much lower for all the examined variables. Especially significant are the 
differences in the case of the density and of the velocity. 

Higher above the vortex, close to  the shock triple-point the similarity is improved. 
A review of the variation of all variables (figure 21), indicates that in the major part 
of the interaction field the conical similarity is very good. It is only the smaller 
inclination of the separation shock (see figure 16b)  at the first section that gives 
longer interaction length and smaller compression. The agreement a t  the region of 
the rear shock is excellent for all the examined variables. 

4. Concluding remarks 
The supersonic flow about a fin-plate configuration has been simulated 

numerically, for providing evidence supplementary to experimental studies con- 
cerning the nature of the established flow. Field data presented in a graphical form 
support the flow model proposed by Kubota & Stollery (1982), according to which 
the flow is dominated by a conical vortical structure which is formed owing to the 
interaction of the oblique shock generated at  the fin with the boundary layer of the 
plate. Field data presented in a graphical form also support the flow model proposed 
by Alvi & Settles (1990) according to which the flow is dominated by a shock system 
consisting of a separation shock and a rear shock, extending from the shock triple- 
point to the surface of the underlying vortex. For the first time this vortex and a 
weaker one that appears above the corner, have been visualized in space. 

Cross-sections of the flow field have been projected conically a t  the outflow plane, 
using the iso-value contours of a flow variable for visualization. It has been found 
that in reality the flow is not perfectly conical but there are small deviations, 
especially in the region between the separation shock and the plate. These deviations 
have been attributed to  the different scales of development of the boundary layer of 
the plate and of the conical vortex. This boundary layer is the one that lifts off the 
surface and forms the conical vortex. Owing to the different rates of development, 
the boundary layer a t  cross-sections far from the outflow plane appears thicker than 
i t  should be for a purely conical flow. 

As a consequence of the different scales of development of the boundary layer and 
of the vortex, a t  a large part of the conical flow field the values of the various flow 
variables do not remain constant along conical rays but vary slowly. Pressure seems 
to  present a better conical variation than other flow variables, like velocity and 
density, because pressure is constant across the non-conically developing boundary 
layer. 
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study the problem of the three-dimensional shock wave/boundary-layer interaction. 
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